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Abstract—This paper considers the problem of space-time
adaptive processing (STAP) in non-homogeneous environments,
where the disturbance covariance matrices of the training and
test signals are assumed random and different with each other.
A Bayesian detection statistic is proposed by incorporating the
randomness of the disturbance covariance matrices, utilizing
a priori knowledge, and exploring the inherent Block-Toeplitz
structure of the spatial-temporal covariance matrix. Speci�cally,
the Block-Toeplitz structure of the covariance matrix allows us to
model the training signals as a multichannel auto-regressive (AR)
process and hence, develop the Bayesian parametric adaptive
matched �lter (B-PAMF) to mitigate the training requirement
and alleviate the computational complexity. Simulation using
both simulated multichannel AR data and the challenging
KASSPER data validates the effectiveness of the B-PAMF in
non-homogeneous environments.

Index Terms—Parametric adaptive matched �lter, Bayesian
detection, space-time adaptive signal processing, non-
homogeneous environments.

I. INTRODUCTION

Traditional space-time adaptive processing (STAP) usually
deals with homogeneous environments, where the test signal is
assumed to share the same covariance matrix with the training
signals [1]–[4].

To account non-homogeneous environments, a number of
models have been proposed. One is the partially homogenous
environment, which assumes the training signals share the co-
variance matrix with the test signal up to an unknown scaling
factor [5], [6]. This model can be considered as a special case
of the generalized eigenrelation (GER) [7]. Another one is
the compound-Gaussian model, which assumes the training
signals are a product of a texture (scaler) and a Gaussian
vector. The texture is used to simulate power differences
among the signals from range bins [8], [9]. More recently,
a new class of non-homogeneous environments for adaptive
signal detection emerges. This non-homogeneous environment
is characterized by treating disturbance covariance matrices of
both the test signal and training signals as random matrices
and ensuring that they are different in probability one [10]–
[14]. Following the Bayesian non-homogeneousmodel in [10],
an adaptive matched �lter has been derived by replacing the
exact covariance matrix of the test signal by its maximum a
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posteriori (MAP) estimate in the matched �lter [10]. It has
been shown that, by accounting the heterogeneity knowledge,
the Bayesian adaptive matched �lter (B-AMF) outperforms
the standard AMF in the non-homogeneous environment. For
applications of this Bayesian non-homogeneous model that
employ space-time adaptive processing, the training require-
ment of the sample covariance matrix (SCM)-based B-AMF
cannot be met due to the scarcity of the training signal. For
example, with J = 11 spatial channels and N = 32 coherent
pulses of the KASSPER dataset and assuming an instantaneous
RF bandwidth of 500 KHz, K = JN = 352 training signals
calls for the training range over a 200-km range, which is not
practical [15], [16].

In this paper, while preserving the Bayesian non-
homogeneous environment, we further explore the inherent
Block-Toeplitz structure of the spatial-temporal covariance
matrix which allows the block LDU decomposition [17], and
hence enables the disturbances to be modeled as a multi-
channel auto-regressive (AR) process [17]–[23]. The result-
ing Bayesian parametric adaptive matched �lter (B-PAMF)
reduces the joint spatial-temporal whitening of the SCM-
based B-AMF to successive spatial and temporal whitening.
As a result, it facilitates the STAP in the non-homogeneous
environments, and reduces the excessive training requirement
of the B-AMF. Moreover, the B-PAMF is able to incorporate
heterogeneities of the signals and utilize available a prior
knowledge to the decision statistic. The effectiveness of the
B-PAMF is veri�ed by using the simulated multichannel AR
data and the high �delity KASSPER data [15].

II. SIGNAL MODEL

Assume J spatial channels, N temporal pulses, and K
training range cells. The problem of interest is to detect a
JN × 1 multichannel signal s with unknown amplitude α in
the presence of spatially and temporally correlated disturbance
d0:

H0 : x0(n) = d0(n), n = 0, 1, · · · , N − 1,

H1 : x0(n) = αs(n) + d0(n), n = 0, 1, · · · , N − 1,
(1)

where d0 = [dT
0 (0),dT

0 (1), · · · ,dT
0 (N − 1)]T , and s and x0

are similarly de�ned. In this paper, the signal model makes
the following assumptions:

• AS1 (Multichannel AR Process): The disturbances in
both test and training signals are modeled as a multi-
channel AR process [17]–[19]:

dk(n) = −∑P
i=1 AH(i)dk(n−i)+εk(n), k = 0, · · · , K,

(2)
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where AH =
[
AH(1),AH(2), · · · ,AH(P )

]
denote the

unknown multichannel AR coef�cient matrix, and εk(n)
denote the J × 1 temporally white but spatially colored
noise vectors.

• AS2 (Random Disturbance Covariance Matrix of
Training Signals): The noise vector εk(n) is distributed
as εk(n) ∼ CN (0,Q), and the spatial covariance matrix
Q follows an inverse complex Wishart distribution with
degrees of freedom μ and mean Q̄:

p(Q) =

∣∣(μ − J)Q̄
∣∣μ

Γ̃(J, μ) |Q|(μ+J)
e−(μ−J) tr(Q−1Q̄), (3)

where Γ̃(J, μ) = πJ(J−1)/2
∏J

k=1 Γ (μ − J + k) with Γ
given by the Gamma function [24].

• AS3 (Random Disturbance Covariance Matrix of Test
Signal): The noise vector in the test signal ε0(n) ∼
CN (0,Q0), and Q0, given Q, has a complex Wishart
distribution with degrees of freedom ν and mean Q

p (Q0|Q) =
νJν |Q0|ν−J

Γ̃(J, ν)|Q|ν e−ν tr(Q−1Q0). (4)

The multichannel AR process for the disturbances in both
the test and training signals consists of two types of unknown
parameters: one is the deterministic AR coef�cient matrix A,
and the other is the random spatial covariance matrices Q
and Q0. The available a prior knowledge is imposed on the
mean of Q, i.e., Q̄, which can be obtained from sources
such as land-use maps, past measurements, etc [15]. It is
said that the importance of the a priori knowledge Q̄ is
controlled by parameter μ, while the the heterogeneities, i.e.,
the statistical differences between the test and training signals,
are determined by parameter ν. Most importantly, Q �= Q0

with probability one, which ensures the environment non-
homogeneous [10].

III. BAYESIAN PARAMETRIC ADAPTIVE MATCHED FILTER

By assuming perfect knowledge on parameters A and
Q0, the solution to the problem of interest is the classical
parametric matched �lter (PMF) [17]:

TPMF =

∣∣∣∣
N−1∑
n=P

s̃H(n)Q−1
0 x̃0(n)

∣∣∣∣
2

N−1∑
n=P

s̃H(n)Q−1
0 s̃(n)

H1

≷
H0

γPMF, (5)

where γPMF denotes the PMF threshold subject to a selected
probability of false alarm, and the whitened steering vector
and test signal are obtained by using the true AR coef�cient
matrix A

s̃(n) = s(n) +
P∑

p=1

AH(p)s(n − p), (6)

x̃0(n) = x0(n) +
P∑

p=1

AH(p)x0(n − p). (7)

The parametric AMF replaces the exact AR coef�cient ma-
trices A and the spatial covariance matrix Q0 in the PMF

statistic by their estimates (e.g., the maximum likelihood
estimate (MLE) by using the training signals). For the non-
homogeneous environment considered in this paper, due to the
randomness of the spatial covariance matrix, we adapt a hybrid
parametric AMF, which is denoted as the Bayesian PAMF (B-
PAMF) by �rst obtaining the MLE of the deterministic AR
coef�cient matrix ÂML, then deriving a maximum a posteriori
estimate (MAP) of the stochastic spatial covariance matrix
Q̂0,MAP and �nally replacing A and Q0 in the PMF statistic
by their estimates.

A. MLE of A

According to the signal model, the joint probability density
function (pdf) of the training signals can be approximated
(ignore the conditionality on the �rst P temporal vectors) as
[18]

f (x1, · · · ,xK |A,Q) =
[

1
πJ |Q|e

− tr(Q−1Σ(A))
]K(N−P )

,

where

Σ(A) =
1

K(N − P )

K∑
k=1

N−1∑
n=P

εk(n)εH
k (n) (8)

From AS2, we can remove the dependence of the above pdf
on Q by integrating it over Q:

f (x1, · · · ,xK |A) =
∫

f (x1, · · · ,xK |A,Q) p(Q)dQ

=

∣∣(μ − J)Q̄
∣∣μ

πJK(N−P )Γ̃(J, μ)

∫
|Q|−L e− tr(Q−1Σ̃)dQ

=

∣∣(μ − J)Q̄
∣∣μ Γ̃(J, L − J)

πJK(N−P )Γ̃(J, μ)
|Σ̃|−L+J (9)

where L = μ + J + K(N − P ) and Σ̃ = K(N − P )Σ(A) +
(μ − J)Q̄. Therefore, �nding the MLE of A is equivalent to
minimizing the determinant of Σ̃. Rewrite the matrix Σ̃ as

Σ̃ = K(N − P )Σ(A) + (μ − J)Q̄

=R̂xx + R̂H
yxA + AHR̂yx + AHR̂yyA + (μ − J)Q̄

=
(
AH + R̂H

yxR̂
−1
yy

)
R̂yy

(
AH + R̂H

yxR̂
−1
yy

)H

+ R̂xx − R̂H
yxR̂

−1
yy R̂yx + (μ − J)Q̄, (10)

where

R̂xx =
K∑

k=1

N−1∑
n=P

xk(n)xH
k (n), R̂yy =

K∑
k=1

N−1∑
n=P

yk(n)yH
k (n),

R̂yx =
K∑

k=1

N−1∑
n=P

yk(n)xH
k (n), (11)

with yk(n) =
[
xT

k (n − 1), · · · ,xT
k (n − P )

]T ∈ CJP×1.
Since R̂yy is nonnegative de�nite and the remaining terms
R̂xx − R̂H

yxR̂
−1
yy R̂yx + (μ − J)Q̄ do not depend on A, it

follows from (10) that

Σ̃ ≥ Σ̃|A=AML = R̂xx − R̂H
yxR̂

−1
yy R̂yx + (μ − J)Q̄, (12)
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where the MLE of A is given as

ÂML = −R̂H
yxR̂

−1
yy . (13)

When Σ̃ is minimized, the MLE ÂML will minimize any
nondecreasing function including the determinant of Σ̃.

B. MAP Estimate of Q0

The MAP estimate of Q0 requires the computation of the
posterior distribution f (Q0|x1,x2, · · · ,xK):

f (Q0|x1,x2, · · · ,xK) =
∫

f (Q0,Q|x1,x2, · · · ,xK)dQ,

(14)

where

f (Q0,Q|x1,x2, · · · ,xK)
∝f (x1,x2, · · · ,xK |Q0,Q) p (Q0|Q) p (Q)

∝ |Q0|ν−J |Q|−(L+ν)
e− tr(Q−1[Σ̃+νQ0]). (15)

As a result, (14) can be calculated as∫
f (Q0,Q|x1,x2, · · · ,xK)dQ

∝ |Q0|ν−J
∫

|Q|−(L+ν)
e− tr(Q−1[Σ̃+νQ0])dQ

∝ |Q0|ν−J |Σ̃ + νQ0|μ+ν+K(N−P ). (16)

Taking the logarithm of the above equation, then taking the
derivative with respect to Q0, and equaling to zero, we have

∂ ln f (Q0|x1,x2, · · · ,xK)
∂Q0

∝ (ν − J)Q−1
0 − ν (μ + v + K(N − P )) [Σ̃ + νQ0]−1 = 0,

(17)

which suggests that, given A, the estimate of Q0 is

Q̂0 =
(ν − J)

ν(μ + J + K(N − P ))
Σ̃. (18)

Replacing A with ÂML of (13) in the above estimate (viz, Σ̃),
the MAP estimate of Q0 is

Q̂0,MAP =
(ν − J)

ν(μ + J + K(N − P ))

×
[
R̂xx − R̂H

yxR̂
−1
yy R̂yx + (μ − J)Q̄

]
. (19)

It is seen that the MAP of Q is a linear combination of a
standard estimate of Q as introduced in [18], [19] and the a
priori knowledge Q̄. This linear combination has been seen
before for non-parametric approaches [10], [25].

C. Bayesian PAMF

With the ML estimate of A and the MAP estimate of
Q0, the adaptive version of the PMF in the heterogeneous
environment can be derived as

TB-PAMF =

∣∣∣∣
N−1∑
n=P

ˆ̃sH(n)Q̂−1
0,MAP

ˆ̃x0(n)
∣∣∣∣
2

N−1∑
n=P

ˆ̃sH(n)Q̂−1
0,MAP

ˆ̃s(n)

H1

≷
H0

γB-PAMF (20)

where γB-PAMF denotes the B-PAMF threshold subject to a
selected probability of false alarm, Q̂0,MAP is given by (19),
and the whitened steering vector and the whitened test signal
are obtained by using ÂML given by (13):

ˆ̃s(n) = s(n) +
P∑

p=1

ÂH
ML(p)s(n − p), (21)

ˆ̃x0(n) = x0(n) +
P∑

p=1

ÂH
ML(p)x0(n − p). (22)

From (20), on one hand, it is seen that the B-PAMF per-
forms successive whitening, i.e., temporal whitening followed
by spatial whitening, as opposed to joint spatio-temporal
whitening across all JN dimensions of the Bayesian AMF
in [10]. On the other hand, compared with the standard
PAMF [17], the B-PAMF incorporates the a priori knowledge,
i.e., Q̄, and utilizes the heterogeneity parameter ν and the
importance parameter of the a priori knowledge, i.e., μ into
the estimate of the spatial covariance matrix Q. Hence, it is
allowed that the B-PAMF provides computational ef�ciency
and mitigates training requirement, meanwhile exploiting the
a priori knowledge and the heterogeneity to improve the
performance of detection.

IV. NUMERICAL EXAMPLES

In this section, simulation results are provided to illustrate
the performance of the B-PAMF. Speci�cally, we �rst test
the B-PAMF by using simulated data which conforms to
AS1, AS2 and AS3, and then using the more challenging
KASSPER dataset [15]. The disturbance signal is generated
as a multichannel AR(2) process with AR coef�cient A and a
spatial covariance matrix Q. The signal vector s corresponds
to a uniform equispaced linear array with randomly selected
normalized spatial and Doppler frequencies. The signal-to-
interference plus noise ratio (SINR) is de�ned as

SINR = |α|2sHR̄−1s, (23)

where R̄ corresponds to the assigned AR coef�cient matrix A
and the mean of the training spatial covariance matrix Q̄. For
each Monte-Carlo trial, the spatial covariance matrix Q for the
training signal is generated as an inverse Wishart distribution
with mean Q̄, and then, given Q, the spatial covariance matrix
Q0 for the test signal is generated as a Wishart distribution
with mean Q.

We focus here on performance comparison between the B-
PAMF and the standard PAMF [17] in the non-homogeneous
environment. Figs. 1(a)-1(c) show the probability of detection
versus the SINR for the B-PAMF and the standard PAMF in
cases of different values of μ and ν, when P = 2, J = 4,
N = 16, K = 1, and Pf = 0.01. It is seen that, in all
three cases, the B-PAMF outperforms the standard PAMF.
Speci�cally, for a �xed value of μ, a larger value of ν,
more homogeneous environments, results in slightly improved
performance of detection of the B-PAMF, from Fig. 1(a) to
Fig. 1(b). On the other hand, for a �xed value of ν, increasing
μ means more importance of the a priori knowledge of Q̄,
which leads to wider performance gap between the B-PAMF
and PAMF, as compared between Fig. 1(a) and Fig. 1(c).
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Fig. 1. Probability of detection versus SINR (a) when P = 2, μ = 9, and ν = 5; (b) when P = 2, μ = 9, and ν = 10; (c) when P = 2, μ = 14, and
ν = 5.

V. CONCLUSION

A Bayesian parametric adaptive matched �lter has been
proposed by modeling the disturbances in the test and training
signals as a multichannel AR process and simulating the het-
erogeneity between the training and test signals by introducing
random disturbance covariance matrices. The B-PAMF admits
successive temporal and spatial whitening, which reduces
the computational complexity of the joint spatial-temporal
whitening based adaptive detectors. The training requirement
is also reduced. Simulation results validate the effectiveness
of the B-PAMF.
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